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Abstract

We study the population cycles of the Monarch butterfly using one of the simplest systems incorporating

both migration and local dynamics. The annual migration of the Monarch involves four generations.

Members of Generations 1–3 (occasionally 4) migrate from the over-wintering site in Central Mexico to

breeding grounds that extend as far north as the Northern United States and Southern Canada. A portion
of the Generation 3 and all members of the Generation 4 butterflies begin their return to the over-wintering

grounds in August through October where they enter reproductive diapause for several months. We

developed a simple discrete-time island chain model in which different fecundity functions are used to

model the reproductive strategies of each generation. The fecundity functions are selected from broad

classes of functions that capture the effects of either contest or scramble intraspecific competition in the

Monarch population. The objectives of our research are multiple and include the study of the genera-

tionally dependent intraspecific competition and its effect on the pool size of migrants as well as the per-

sistence of the overall butterfly populations. The stage structure used in modeling the Monarch butterfly
dynamics and their generationally dependent reproductive strategies naturally support fluctuating patterns

and multiple attractors. The implications of these fluctuations and attractors on the long-term survival of

the Monarch butterfly population are explored.
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1. Introduction

The North American Monarch butterfly, Danaus Plexippus Lepidoptera, exhibits one of the
most spectacular natural migration phenomena in the world. However, it is considered an
endangered phenomena because scientists fear that the incredible Monarch migration pattern may
not last beyond the next decade [6,43,44,50,53–55]. In this article, we use a simple mathematical
model to study the effects of migration and intraspecific competition on the Monarch butterfly
population dynamics. Our model, a spatially discrete advection model, tracks populations rather
than probabilities of patch occupancy. The model does not assume stochastic extinctions, and in
the model dispersal arises from deterministic directed motion rather than stochastic colonizations.
Such models are sometimes called island chain models [2,13,18,22,28,39,40,52]. By their own
nature, simple models cannot incorporate many of the complex biological factors. However, they
often provide useful insights to help our understanding of complex processes.
Spatial heterogeneity is one of the most important factors influencing population dynamics,

and our Monarch butterfly population model has a spatial structure [49]. Within the past three
decades mathematical ecologists have had great success in showing how specific aspects of the
spatial environment alters population and community environment [22,49]. Ecologists have often
used spatial structure to explain the stable coexistence of species in a competitive environment
[11,21,24,28,34], the persistence of predator–prey and host-parasite interactions [1,8,12,15,20,35,
41,45,58], and the regional persistence of small populations subject to local stochastic extinction
[9,10]. Spatial structure is also an important characteristic of metapopulation models [5,14,16,56].
Monarch butterfly population growth takes place at discrete-time intervals, and we use a

system of non-linear difference equations rather than continuous-time differential equations to
describe the growth process. Non-linear difference equations, even if simple and deterministic with
respect to their characteristic parameters, are known to exhibit a remarkable spectrum of dynamic
behavior including apparent random chaotic fluctuations [1,26,27,30–32,40,59]. Data collected
from the 4th of July North American Monarch butterfly count indicates large population fluc-
tuations from year to year with no apparent long-term trends [48]. Our model captures this ob-
served annual fluctuations of the Monarch butterfly population, and for some choice of the model
parameters, the dynamical fluctuations are in many respects indistinguishable from the sample
realizations of a random process.
In this paper, we focus on compensatory (equilibrium) and overcompensatory (oscillatory)

dynamics in the Monarch butterfly population, two types of density dependent intraspecific
competition for resources. Compensatory dynamics is also referred to as pure contest competition
because only a constant number of competitors survive in a single-habitat system. The term
was initially proposed by Nicholson who contrasted it with pure scramble competition, the most
extreme form of overcompensatory dynamics, where all the competitors may be so adversely
affected by each other that none of them survive [4,36,56,60].
In Section 2, we develop the main model, a simple discrete-time Monarch butterfly population

model that describes Monarch populations over four generations. Also in Section 2, we obtain the
Monarch butterfly basic demographic reproductive number, Rd , a threshold parameter for the
persistence or extinction of the butterfly population. We consider different fecundity functions
that depend on population densities and availability of resources. In Section 3, we focus on the
effects of migration and contest (compensatory dynamics) intraspecific competition on Monarch
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population dynamics. We prove that Monarch migrant populations under compensatory
dynamics persist on a globally stable positive steady-state whenever Rd > 1, while Rd < 1 implies
the global extinction of the Monarch butterfly. It is known that migration and overcompensatory
dynamics can give rise to complex bifurcation patterns including multiple attractors with complex
basins of attraction [7,17,56]. Section 4 is on the role of migration and scramble (overcompen-
satory dynamics) intraspecific competition on Monarch population dynamics. In Section 4,
examples are used to demonstrate cyclic and chaotic attractors as well as coexisting ‘multiple’
attractors in the Monarch population model. Mixed contest and scramble competition models are
studied in Section 5. When all the populations of the Monarch butterfly are under mixed com-
pensatory–overcompensatory dynamics, we demonstrate population oscillations and explore how
varying the migration and survival parameters affect the Monarch dynamics such as population
abundance and the long-term steady-states (attractors) [4,5,36,40,56,60]. Our results are sum-
marized in Section 6, and detailed proofs are collected in Appendix A.
2. The Monarch butterfly model

In this section, we construct a simple model that describes the life cycles of the Monarch
butterfly. There are three to four generations of Monarchs within the expanse of one year, and the
annual Monarch migration does not occur entirely within one generation. The initial Monarch
clusters appear in trees near mountain tops of Mexico in early winter. Adult Monarchs travel
southwest to the neovolcanic mountains of Central Mexico from their breeding grounds in
Southern Canada and Northern United States. A proportion of the third generation, 1 the gen-
eration that is born in the Northern United States and Southern Canada, reproduces in the
northern breeding grounds. The rest of this generation migrates south with the fourth generation
(offspring of Generation 3 or Generation 4) that eclose (hatch) late in August and early fall [33].
These migrating individuals are in a reproductively dormant state. This reproductive diapause is
triggered by changes in temperature and photoperiod, but on the whole is poorly understood. The
migratory generations live approximately six to nine months [3,5,19]. While remaining in Mexico
from November through early February, the butterflies are in a physically dormant state and
cluster in fir trees (see Fig. 1). This period of time is commonly referred to as overwintering.
The third and fourth generations begin a northeasterly remigration in early spring and

reproductive dormancy ends. The spring migration is an annual remigration. That is, the same
migrating fall population returns to the northern breeding grounds in the spring [50]. Urquhart
[50] denies the notion that spring remigrants travel northward for a short distance, deposit their
eggs and then die. He states that only a few larvae are found in Southern United States in the
spring and the female adults found in the northern breeding grounds in May and early June are
greatly worn. Urquhart concludes that many of the overwintering females return to the breeding
grounds of Northern United States and Southern Canada in spring and early summer producing
the first generation along the way. The offspring of the migrating generation, Generation 1, and
the offspring of this first generation, Generation 2, appear in the northern breeding areas in May
1 We call this Generation 3 for modelling convenience.



Fig. 1. Monarch Butterfly (Danaus Plexippus Lepidoptera).
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through early July. The males of the migrating generation do not arrive in the northern breeding
areas, as they will mate with the females in the early spring and die shortly after [50]. However,
there have been other studies suggesting that the spring remigration does not occur in the manner
described by Urquhart. In 1993, Malcolm determined that nearly all of the spring migrants found
in northern breeding areas are the offspring of the Mexican overwintering generation. The
Monarchs remigrating from Mexico in the early spring lay most of their eggs in Texas and
Louisiana on the ubiquitous early spring milkweed, A. virdis [29]. Thus, Malcolm poses a suc-
cessive brood remigration to the northern breeding grounds, while Urquhart essentially describes
a single sweep migration.
Knight [25], in a study of spring remigration of the Gulf Coast states, emphasizes the critical

time period in which remigrants must establish the new spring generation. If the overwintering
Monarchs arrive too early in March, there is a chance the milkweed where eggs are laid will be
killed by frost, while if they arrive too late in the spring (mid to late April), then the milkweeds will
have begun to senesce or wither [25]. Thus, there is a three week critical time period to establish
Generation 1 Monarchs. The population of Generation 1 and 2 that continue migrating north-
ward and the majority of Generation 3 have a life-span of two to six weeks. The Generation 3
adults that emerge late in August undergo reproductive diapause and exhibit the extended life-
span discussed previously. In the northern breeding areas during early summer, Monarchs spend
their energy in reproduction until the later summer generations appear. In essence, time is
a crucial factor in determining the number of generations within one migratory cycle.
We let xiðtÞ denote the population size of Generation i 2 f1; 2; 3; 4g at time t, where t is a time

period of one year. Note that by defining xiðtÞ in this form we are considering the total number of
butterflies in each generation in the whole year, t, disregarding the fact that Monarchs from
different generations may have different life spans.
The migratory proportion of the Generation 3 population is represented by ð1� dÞ, where

d < 1. Thus d represents the proportion of non-migratory individuals. The parameter ci denotes
the survival probability of individuals producing Generation i, so 0 < ci < 1. Observe that the
survival probability c1 < ci, (for each i 2 f2; 3; 4g) due to increased mortality of the migrating
Generations 3 and 4 while traveling from the northern breeding grounds to Central Mexico.
Additionally, overwintering in Central Mexico decreases survival probability (see Fig. 2). The



Fig. 2. Migration pattern of the Monarch butterfly.
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fecundity function for each Generation i, fi, describes how new individuals of Generation i are
born. For each Generation i 2 f1; 2; 3; 4g, unless declared otherwise, we assume that fi takes on
the form fiðxiÞ ¼ xigiðxiÞ, where the per-capita growth function, gi : ½0;1Þ ! ð0;1Þ, is assumed to
be strictly decreasing positive and twice differentiable (C2 on ½0;1Þ) with limxi!1 giðxiÞ < 1, and
where xi is the measure of the size of the population.

Definition 1. Generation i 2 f1; 2; 3; 4g Monarchs are governed by compensatory dynamics
whenever fiðxiÞ ¼ xigiðxiÞ has a positive fixed point Xi and all positive densities approach the
positive equilibrium at Xi monotonically under fi iterations [36,56].

If fi increases monotonically from zero with the rate of increase slowing down as xi gets large
then Generation i are under compensatory dynamics. The Beverton–Holt stock recruitment
model, fiðxiÞ ¼ aixi

1þbixi
, portrays compensatory dynamics where the positive constant ai > 1 is the

maximal per capita intrinsic growth rate of the population and the positive constant bi scales the
carrying capacity of the population. The map fi has a global attractor at Xi ¼ ai�1

bi
, and no initial

condition overshoots Xi [56].

Definition 2. Generation i 2 f1; 2; 3; 4g Monarchs are governed by overcompensatory dynamics
whenever fiðxiÞ ¼ xigiðxiÞ has a positive fixed point Xi and some positive population sizes ‘over-
shoot’ the positive equilibrium at Xi under fi iterations [36,56].

Data collected from the 4th of July Monarch Butterfly Count, a one-day annual census of
butterflies at selected sites, indicates that the North American Monarch butterflies fluctuate in



Fig. 3. Mean Monarch butterfly population per party hour in the 4th of July count for Eastern and Pacific areas from

1976 to 1994 [48].
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abundance annually. However, no long-term trends were apparent from the data (see Fig. 3) [48].
In Sections 4 and 5, we use overcompensatory dynamics to understand long-term trends in the
Monarch butterfly population whenever the Monarch population fluctuates in abundance
annually.
If fi is a one hump map with a stable (respectively, an unstable) positive fixed point, then the

return to the stable fixed point takes the form of damped oscillations (respectively, the local
behavior near the unstable fixed point takes the form of divergent oscillations), and the dynamics
is overcompensatory. Whenever the carrying capacity of the population ri > 1 and fi is given by
Ricker’s model, fiðxiÞ ¼ xi expðri � xiÞ, then Generation i Monarchs are governed by overcom-
pensatory dynamics [42].

Definition 3. Generation i 2 f1; 2; 3; 4g fecundity function, fi, is an a-monotone concave map if
f 0
i ðxiÞ > 0 and f 00

i ðxiÞ < 0 for each xi 2 ½0; a
 [56].

Generation i Monarchs are under compensatory dynamics at population sizes in the closed
interval ½0; a
 whenever fi is an a-monotone concave map with a unique positive fixed point in the
open interval ð0; aÞ. The Beverton–Holt model is an 1-monotone concave map (compensatory
dynamics). When Generation i fecundity function, fi, is an a-monotone concave map and some
initial populations in the interval ða;1Þ overshoot the positive fixed point in the closed interval
½0; a
, then fi describes situations in which there is compensatory and overcompensatory dynamics
at lower densities and higher densities, respectively. Ricker’s model fiðxiÞ ¼ xi expðri � xiÞ with
0 < ri < 1 is a 1-monotone concave map since all positive initial populations with densities in the
interval ½0; 1
 approach the unique positive fixed point Xi ¼ ri monotonically but initial popula-
tions in ð1;1Þ overshoot the positive fixed point. That is, there is compensatory and overcom-
pensatory dynamics in ½0; 1
 and ð1;1Þ, respectively [7,57].
Each generation of the Monarch butterfly is a function of the individuals in previous genera-

tions that are alive and reproduce successfully. Recall that all the four generations considered are
born within a year. Therefore, at time t þ 1, the fecundity functions of Generations 2, 3 and 4
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depend on Generations 1, 2 and 3 populations at the same time t þ 1, respectively. However,
Generation 1, the first generation considered within a year, has a fecundity function that depends
on Generations 3 and 4 from the previous year. The following system of non-linear difference
equations describes the Monarch population dynamics:
x1ðt þ 1Þ ¼ f1ðc1½x4ðtÞ þ ð1� dÞx3ðtÞ
Þ;
x2ðt þ 1Þ ¼ f2ðc2x1ðt þ 1ÞÞ;
x3ðt þ 1Þ ¼ f3ðc3x2ðt þ 1ÞÞ;
x4ðt þ 1Þ ¼ f4ðdc4x3ðt þ 1ÞÞ;

9>>=
>>; ð1Þ
where xiðtÞ, i 2 f1; . . . ; 4g, describe Generations 1–4 population size at time t. Using this island
chain model, we will describe changes in population abundance and compensatory mechanisms
sufficient to ensure regeneration after population crash, evaluate the effects of variation in the
parameter d (or the proportion of Generation 3 population that does not migrate), and look for
periodic oscillations and presence of multiple attractors.
System (1) can be written as the following system of first-order difference equations:
x1ðt þ 1Þ ¼ f1ðc1½x4ðtÞ þ ð1� dÞx3ðtÞ
Þ;
x2ðt þ 1Þ ¼ f2 � c2f1ðc1½x4ðtÞ þ ð1� dÞx3ðtÞ
Þ;
x3ðt þ 1Þ ¼ f3 � c3f2 � c2f1ðc1½x4ðtÞ þ ð1� dÞx3ðtÞ
Þ;
x4ðt þ 1Þ ¼ f4 � dc4f3 � c3f2 � c2f1ðc1½x4ðtÞ þ ð1� dÞx3ðtÞ
Þ;

9>>=
>>; ð2Þ
where fi � fj is fi composed with fj. Clearly, the dynamics of the 4-dimensional model can be
completely determined from the last two equations in System (2), and henceforth we study the
following 2-dimensional model:
xðt þ 1Þ ¼ h1ðc1½yðtÞ þ ð1� dÞxðtÞ
Þ;
yðt þ 1Þ ¼ h2ðc1½yðtÞ þ ð1� dÞxðtÞ
Þ;

�
ð3Þ
where x3 ¼ x, y ¼ x4, h1 ¼ f3 � c3f2 � c2f1 and h2 ¼ f4 � dc4f3 � c3f2 � c2f1 (that is, h2 ¼ f4 � dc4h1).
To write System (3) in a compact form, the vector of population sizes (xðtÞ; yðtÞ) is written as

(x; y) so that the Monarch model reproduction function F : R2
þ ! R2

þ may be written as
F ðx; yÞ ¼ h1ðc1½yð þ ð1� dÞx
Þ; h2ðc1½y þ ð1� dÞx
ÞÞ:

F t is F composed with itself t times. F t

i ðxÞ is the ith component of F t evaluated at the point (x; y)
in R2

þ. The set of iterates of the map F is equivalent to the set of all density sequences generated
by System (3). Therefore, F t gives the population densities in generation t.

Lemma 1. The positive cone is invariant, and no non-negative orbit is unbounded in System (3).

The proof of Lemma 1 is in Appendix A.
The basic demographic reproductive number is
Rd ¼ c1c2c3g1ð0Þg2ð0Þg3ð0Þðð1� dÞ þ c4dg4ð0ÞÞ:

Rd < 1 when the maximal value of each per capita growth rate gið0Þ < 1. In Theorem 1, we

prove that Rd < 1 implies extinction of the Monarch butterflies in all generations, while Rd > 1
implies its persistence.



190 A.-A. Yakubu et al. / Mathematical Biosciences 190 (2004) 183–202
3. Monarch butterfly under compensatory dynamics

Here, we study the effects of migration and compensatory dynamics on the persistence of the
Monarch butterfly. The dynamics of each Generation i 2 f1; 2; 3; 4g are assumed to be com-
pensatory. That is, each fecundity function, fi, is an a-monotone concave map with a unique po-
sitive fixed point in the open interval ð0; aÞ. Independent of initial Monarch population sizes, we
prove that migration and Rd > 1 lead to an overall globally stable positive steady-state and the
Monarch population persists, while migration and Rd < 1 lead to an overall global extinction.
Consequently, if each net per capita growth rate cigið0Þ is small, then the butterfly population will
go extinct in System (3), that is, the equilibrium ð0; 0Þ is globally stable. However, if the net per
capita growth rate is large enough, then the population will persist on a positive stable equilibrium
whenever the dynamics of each Generation i 2 f1; 2; 3; 4g are compensatory. We collect these
results in the following theorem.
Theorem 1. In System (3), for each Generation i 2 f1; 2; 3; 4g let each fecundity function be modeled
by fi, an a-monotone concave map with Xi 2 ð0; aÞ. Then the Monarch population persists on a
globally attracting positive fixed point q ¼ ðq1; q2Þ 2 R2þ such that F tðxÞ ! q as t ! 1 for every
point x 2 ½0; p
 � f0g, provided that Rd > 1 and p ¼ ða; aÞ 2 intðR2þÞ. However, if Rd 6 1, then for
every x 2 ½0; p
, F tðxÞ ! 0 as t ! 1, and the Monarch population goes extinct.

The proof of Theorem 1 is in Appendix A.
Theorem 1 is a generalization of a result of S�aenz and Stein [46]. For an application of Theorem

1, we describe the fecundity function for each Generation i 2 f1; 2; 3; 4g with the Beverton–Holt
equation
fiðxiÞ ¼
aixi

1þ bixi
;

where each ai > 1. That is, each fi is an a-monotone concave map with Xi ¼ ai�1
bi

2 ð0; aÞ and
gið0Þ ¼ ai. Consequently, each fi dynamics is compensatory and in each generation contest
competition exists in the population. Then System (3) assumes the following form:
xðt þ 1Þ ¼ a3a2a1c3c2c1½yðtÞ þ ð1� dÞxðtÞ

1þ ½b3a2a1c3c2c1 þ b2a1c2c1 þ b1c1
½yðtÞ þ ð1� dÞxðtÞ
 ;

yðt þ 1Þ ¼ da4a3a2a1c4c3c2c1½yðtÞ þ ð1� dÞxðtÞ

1þ ½db4a3a2a1c4c3c2c1 þ b3a2a1c3c2c1 þ b2a1c2c1 þ b1c1
½yðtÞ þ ð1� dÞxðtÞ
 :

9>>=
>>;

ð4Þ

In System (4), the basic demographic reproductive number is
Rd ¼ c1c2c3a1a2a3ðð1� dÞ þ c4da4Þ:

The value of Rd is highly dependent on the intrinsic per capita growth rates, the survival

probabilities ci of all generations, as well as the migration rate d. These parameters are the most
critical in determining the long term behavior of the population, either extinction or persistence.
Small values of these parameters lead to extinction while large values lead to the persistence of the
Monarch butterflies (Theorem 1).



Fig. 4. The effects of migration on each generation of Monarch butterfly. On the horizontal axis, 06 d 6 1.
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An interesting biological question that we can ask is, how can we increase the population size of
a specific generation of butterflies? In other words, what ecological conditions have more impact
on Monarch butterflies? In order to answer these questions, we run several simulations varying
different parameters and we study the effects that these changes have in each generation. We
observe that parameters such as the intrinsic per capita growth rates or survival probabilities,
directly affect the size of the population that they produce. That is, the population size in Gen-
eration i increases as the intrinsic per capita growth rate ai or the survival rate ci increases. This
result is what one would expect. However, a variation in each of these parameters that produces
Generation i also has an effect in the other generations. Moreover, as the parameter increases, the
population in the corresponding generation increases at a faster rate. When we consider the
proportion d of individuals in Generation 3 that reproduce in Northern US as the parameter to be
varied, we observe that as d increases from 0 to 1, the population of Generation 4 increases
starting from 0, while the rest of the generations only exhibit small changes in abundance. It is
apparent that parameter d can have a stronger impact on Generation 4 than on any other gen-
eration; Generation 4 is an increasing function of d (Fig. 4).
4. Monarch butterfly under overcompensatory dynamics

We now study the effects of migration and overcompensatory dynamics on the persistence of
the Monarch butterfly. Hence, we consider cases when the fecundity functions of two generations
are under overcompensatory dynamics, while the remaining two are given by the linear function
fiðxiÞ ¼ rixi, where ri represents the proportion of new individuals in Generation i with respect to
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the number of surviving individuals of the previous generation. Then ri ¼ aici where ai is the per
capita growth rate and ci is the survival probability of individuals producing Generation i. By
using the linear fecundity function, we simplify the system of equations. This simplification does
not seem to diminish the ‘realism’ of the model, as small larval densities will exist when there are
concentrated abundant plant communities. That is, we assume that density dependent competi-
tion does not play a consistent significant role within all generations.
First, we examine the case when Generation 1 and Generation 4 Monarch populations

maintain linear fecundity functions, while the Generation 2 and Generation 3 populations are
under overcompensatory dynamics. That is, f1ðx1Þ ¼ r1x1 and f4ðx4Þ ¼ r4x4. Then System (3)
reduces to
xðt þ 1Þ ¼ h1ðc1½yðtÞ þ ð1� dÞxðtÞ
Þ;
yðt þ 1Þ ¼ dr4h1ðc1½yðtÞ þ ð1� dÞxðtÞ
Þ:

�
ð5Þ
In System (5), the invariant ‘diagonal’ line L ¼ fðx; yÞ 2 R2þ jy ¼ dr4xg is globally attracting.
That is, the Monarch population live on the diagonal line. On L, the dynamics of System (5)
is given by the set of iterates of the 1-dimensional map, H : ½0;1Þ ! ½0;1Þ defined by HðxÞ ¼
dr4h1ðc1½ðdr4 þ ð1� dÞÞx
Þ. We summarize these in the following result.

Theorem 2. In System (5), the invariant ‘diagonal’ line
L ¼ fðx; yÞ 2 R2þ jy ¼ dr4xg
is globally attracting, and the dynamics on L are qualitatively equivalent to that of the 1-dimensional
map, H : ½0;1Þ ! ½0;1Þ defined by
HðxÞ ¼ dr4h1ðc1½ðdr4 þ ð1� dÞÞx
Þ:

The proof of Theorem 2 is in Appendix A.
To explore the possible complex overcompensatory dynamics on L, we assume that Generation

2 and Generation 3 fecundity functions in System (5) are given by the Ricker models, f2ðx2Þ ¼
x2er2�x2 and f3ðx3Þ ¼ x3er3�x3 , respectively. Then System (5) becomes
xðt þ 1Þ ¼ c3c2r1½yðtÞ þ ð1� dÞxðtÞ
 � er2þr3�c2r1½yðtÞþð1�dÞxðtÞ
 1þc3e
r2�c2r1 ½yðtÞþð1�dÞxðtÞ
½ 
;

yðt þ 1Þ ¼ dr4c3c2r1½yðtÞ þ ð1� dÞxðtÞ
 � er2þr3�c2r1½yðtÞþð1�dÞxðtÞ
 1þc3e
r2�c2r1 ½yðtÞþð1�dÞxðtÞ
½ 
:

)
ð6Þ
In System (6), the dynamics on the globally attracting invariant line L are generated by the
1-dimensional map
HðxÞ ¼ dr4c3c2r1ðdr4 þ ð1� dÞÞxer2þr3�c2r1½ðdr4þð1�dÞÞx
 1þc3e
r2�c2r1 ½ðdr4þð1�dÞÞx
½ 
:
For some values of the parameters, H supports stable cyclic overcompensatory dynamics via
period-doubling bifurcations route to chaos which are characteristic of Monarch populations (see
Fig. 5) [51].
Now, we examine the case when Generation 1 and Generation 2 Monarch populations

maintain linear fecundity functions, while the Generation 3 and Generation 4 populations are
under overcompensatory dynamics. That is, f1ðx1Þ ¼ r1x1 and f2ðx2Þ ¼ r2x2. Then System (3)
reduces to



Fig. 5. Stable periodic attractors and unstable interval attractors in the Monarch population under overcompensatory

dynamics.
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xðt þ 1Þ ¼ f3ðc3r2r1½yðtÞ þ ð1� dÞxðtÞ
Þ;
yðt þ 1Þ ¼ f4ðdr4f3ðc3r2r1½yðtÞ þ ð1� dÞxðtÞ
ÞÞ:

�
ð7Þ
System (7), a 2-dimensional model, is capable of supporting simple and complex (chaotic)
dynamics including periodic attractors, chaotic attractors and multiple attractors with complex
basins of attraction whenever f3 and f4 are governed by overcompensatory dynamics. To illustrate
these dynamical structures in System (7), we let f3ðxÞ ¼ xer3�x and f4ðyÞ ¼ yer4�y . Then System (7)
becomes
xðt þ 1Þ ¼ c3r2r1½yðtÞ þ ð1� dÞxðtÞ
er3�c3r2r1½yðtÞþð1�dÞxðtÞ
;

yðt þ 1Þ ¼ dc4c3r2r1½yðtÞ þ ð1� dÞxðtÞ
 � er3þr4�c3r2r1½yðtÞþð1�dÞxðtÞ
er3�c3r2r1 ½yðtÞþð1�dÞxðtÞ

:

�
ð8Þ
We explore the dynamics of System (8) when certain parameters are varied separately, and all
other parameters are kept fixed. Through bifurcation diagrams, we determine if parameter var-
iation induces changes in dynamics between Generations 3 and 4. Also, we characterize the types
of bifurcations that occur. Lyapunov exponents are plotted against the parameter range to further
expose the chaotic events or orbits within the system.
The bifurcation diagrams in Fig. 6(a)–(d) compare the parameter c4, the survival probability

that individuals from Generation 2 survive to reproduce, with d, the parameter that describes the
proportion of non-migratory reproducing members of Generation 3. By varying the same
parameter over Generations 3 and 4, Fig. 6 shows that it is possible for the bifurcation from chaos
to stable equilibria or periodic cycles to occur at the same values in Generations 3 and 4, but the



Fig. 6. Periodic and chaotic attractors in System (8).
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scale of the vertical axis deviates between generations. When c3 is varied from zero to one, the
values at which chaos appears is approximately 0.6 in Generations 3 and 4, but strikingly different
patterns of chaos appear when d is the varying parameter. Likewise, periodic cycles occur at
different points between generations. These patterns occur consistently when parameters other
than r1 and r2 are varied. When r1 and r2 have the same range of values, identical patterns are
observed, as they play equal roles within the system.
The plots of Lyapunov exponents support the observation that dynamics across Generations 3

and 4 remained constant as the same parameters are varied [37]. In this case c4 is varied from 0 to
1. A region of positive Lyapunov exponents occur from c4 ¼ 0:7 to c4 ¼ 0:8. Accordingly, the
bifurcations of diagrams (a) and (c) show that chaotic dynamics occur when c4 is between 0.7 and
0.8. We varied the initial conditions of x3 and x4 to find if certain population sizes evoked different
dynamics in the system. Lyapunov exponent diagrams showed identical dynamics between these
variations in initial conditions when r4 was the varying parameter from r4 ¼ 2 to r4 ¼ 3. There-
fore, for this choice of parameters, it appears that differences in population size do not affect the
system greatly.
System (8) is capable of supporting multiple attractors with fractal basin boundaries (see Fig. 7)

[37]. In this situation, long term behavior of the Monarch population is influenced by initial
conditions. Hanski et al. [17] have observed multiple steady-states in field data on the butterfly
Melitaea cinxia. For some parameter values, System (8) supports an invariant curve that is
attracting. Fig. 8 shows the invariant curve and its basin of attraction. We cannot conclude that the
attracting curve is a Ricker’s curve, as multiple attractors exist in the system. Monarch populations



Fig. 7. Basins of attraction of two coexisting 2-cycle attractors at fð0:0845; 0:3107Þ; ð4:44; 1:69Þg and fð0:0238; 0:0905Þ;
ð2:405; 2:6457Þg; in System (8).

Fig. 8. System (8) supports an attracting invariant curve.
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exhibiting initial conditions that place the population on the invariant curve will yield a subsequent
population that will remain on the invariant curve. We found the same results when the fecundity
functions of Generations 2 and 3 were represented by Ricker’s model (overcompensatory
dynamics), while 1 and 4 were linear fecundity functions. In that case, the invariant set is a line (see
Theorem 2). The dynamics on both the invariant curve and the invariant line are similar to the
dynamics generated by the Ricker’s map. That is, simple cyclic oscillations, period-doubling
bifurcations and chaotic events occur on the invariant sets; dependent on the parameter values.
5. Monarch butterfly under mixed dynamics

Due to the lack of ample data on fecundity functions of the Monarch butterfly it is difficult to
precisely understand which factors affect fecundity the most. It is possible that fecundity functions
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of the different generations are formed through varying biological factors [23]. For simplicity, we use
linear fecundity functions to describe Generations 1 and 4 in the system. System (1) takes the form
x1ðt þ 1Þ ¼ r1½dr4 þ ð1� dÞ
x3ðtÞ;
x2ðt þ 1Þ ¼ f2ðc2r1½dr4 þ ð1� dÞ
x3ðtÞÞ;
x3ðt þ 1Þ ¼ f3ðc3f2ðc2r1½dr4 þ ð1� dÞ
x3ðtÞÞÞ;
x4ðt þ 1Þ ¼ dr4f3ðc3f2ðc2r1½dr4 þ ð1� dÞ
x3ðtÞÞÞ:

9>>=
>>; ð9Þ
Clearly, the dynamics of the 4-dimensional model can be completely determined from the third
equation in System (9), and hence we study the 1-dimensional model,
x3ðt þ 1Þ ¼ f3ðc3f2ðc2r1½dr4 þ ð1� dÞ
x3ðtÞÞÞ: ð10Þ

In Eq. (10), we examine the conditions that drive the dynamics when pure contest competition
(compensatory dynamics) and pure scramble competition (overcompensatory dynamics) are in
place.
First, we assume that Generation 2 dynamics is governed by compensatory dynamics while that

of Generation 3 is overcompensatory. In this situation, it is possible for the simple Generation 2
compensatory dynamics to ‘drive’ the mixed Monarch population dynamics. For example, if
Generation 2 is under the Beverton–Holt equation (compensatory dynamics) and Generation 3 is
under the Ricker equation, then System (10) reduces to
x3ðt þ 1Þ ¼ c3a2c2r1½dr4 þ ð1� dÞ
x3ðtÞ
1þ b2c2r1½dr4 þ ð1� dÞ
x3ðtÞ

e
r3�

c3a2c2r1 ½dr4þð1�dÞ
x3ðtÞ
1þb2c2r1 ½dr4þð1�dÞ
x3ðtÞ

� �
: ð11Þ
If c3a2 > r3b2, then Eq. (11) supports a positive steady-state at
x31 ¼ r3
c2r1½dr4 þ ð1� dÞ
ðc3a2 � r3b2Þ

:

When r3 ¼ 2:1, r1 ¼ r4 ¼ 0:9, c2 ¼ c3 ¼ 0:9, a2 ¼ 4, b2 ¼ 1 and d ¼ 0:5, System (11) supports a
stable fixed point at x31 ¼ 2:007 (compensatory dynamics, see Fig. 9). In Fig. 9, we explore the
effects of increasing different parameters on the equilibrium population. If the parameters r3, r1, r4,
c2, c3, a2 and b2 are kept fixed at their current values while the migration rate d is varied between 0
and 1, Fig. 9 shows that x31 increases monotonically. A similar monotonic increase seem to occur
with increasing values of either r3 or c3. However, increasing values of a2 can lead to a monotonic
increase in x31 (up to a maximum value) followed by a monotonic decrease (see Fig. 9).
Now, we analyze the parameter variation with the Ricker equation in Generation 2 and the

Beverton–Holt equation in Generation 3. In this situation, System (10) reduces to
x3ðt þ 1Þ ¼ c3a3c2r1½dr4 þ ð1� dÞ
x3ðtÞer2�r1½dr4þð1�dÞ
x3ðtÞ

1þ b3c2r1½dr4 þ ð1� dÞ
x3ðtÞer2�r1½dr4þð1�dÞ
x3ðtÞ
: ð12Þ
Fascinating dynamical behavior arises in mixed compensatory–overcompensatory systems.
Essentially, the fecundity functions compete for dominance in driving the model dynamics. The
resulting bifurcations are unusual when a single parameter value is perturbed while holding the
other parameters fixed. When the parameter b3 > a3, then we found no interesting bifurcations
and we conclude that the Beverton–Holt equation in Generation 3 (compensatory dynamics) is
the dominant function of the system. However, when a3 is sufficiently larger than b3, then complex



Fig. 9. For most parameter values, the mixed System (11) supports compensatory dynamics when Generation 2 is

under compensatory dynamics while Generation 3 is under overcompensatory dynamics.

Fig. 10. In mixed systems, the dominant dynamics depends on parameter values.
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overcompensatory dynamics emerge and the Ricker’s equation is the more dominant function. In
Fig. 10(a) and (c), an interesting phenomenon occurs, a simple equilibrium dynamics bifurcates to
a cyclic one (period-doubling bifurcation), but then reverts back to the simple form (period-
doubling reversal), creating a bubble effect. The same event occurs in Fig. 10(b) and (d), but the
interior dynamics becomes chaotic. Clearly, these examples have only highlighted few possible
dynamical outcomes in the Monarch butterfly model under mixed scramble-contest competition.
6. Conclusion

In constructing valuable Monarch models, functions that reflect aspects of Monarch fecun-
dity must be developed. Currently, however, information on generational fecundity in breeding
areas is scarce. Our Monarch butterfly island chain model, a starting point in the study of
Monarch population dynamics, utilizes two extreme types of intraspecific density dependent
fecundity functions. One general class of the fecundity functions supports compensatory
dynamics and the other class supports overcompensatory dynamics. This paper focuses on the
effects of compensatory, overcompensatory and mixed compensatory–overcompensatory gen-
erational dynamics on the Monarch migration pattern. Beverton–Holt’s and Ricker’s para-
metric models were chosen as examples of contest (compensatory dynamics) and scramble
(overcompensatory dynamics) intraspecific competition, respectively. Each model system con-
siders four generations during a time period of one year. The impact of each parameter on
population size was studied for each generation. We determined the importance of the pro-
portion of non-migratory reproducing individuals in Generation 3 to the population size in
Generation 4. Such importance includes the possibilities of persistence or extinction in Gen-
eration 4. Survival probabilities and per capita growth rates can drive the Monarch population
to either persistence or extinction. Specific relations of these parameters were found as
thresholds for population continuation. The Monarch carrying capacity can also play an
essential role in determining long-term behavior.
Our Monarch model supports a unique stable equilibrium population when all generational

dynamics are compensatory. Generational populations under compensatory or overcompensa-
tory dynamics support single attractors. However, migration and overcompensatory generational
dynamics fracture basins of attraction through their support of multiple attractors. Our model
supports multiple attractors, showing that it is possible for long-term Monarch dynamics to de-
pend on initial conditions whenever generational populations are under overcompensatory
dynamics. Additionally, the Monarch model under overcompensatory dynamics supports invari-
ant trajectories that can act as cyclic or chaotic attractors. Thus, the model under overcompen-
satory dynamics captures the observed population fluctuations of the Monarch butterfly [48].
In mixed systems, the dynamics are as complex as those under overcompensatory generational

dynamics. Any one of the two different dynamics is capable of driving the mixed system.
Changing conditions can produce periodic life cycles and chaotic behaviors. Interesting dynamics
are observed where simple cyclic behaviors shift to more complex chaotic dynamics, and even
more interesting are the cases where complex chaotic dynamics stabilize to simpler cyclic
behavior. Studies on testing these model predictions with field data on the North American
Monarch butterfly would be welcome [38].
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Appendix A

Proof of Lemma 1. Recall that F1ðx; yÞ ¼ f3 � c3f2 � c2f1ðc1ðy þ ð1� dÞxÞÞ and F2ðx; yÞ ¼
f4 � dc4f3 � c3f2 � c2f1ðc1ðy þ ð1� dÞxÞÞ, where fiðxiÞ ¼ xigiðxiÞ. Therefore, F1ðx; yÞ > 0 and
F2ðx; yÞ > 0 whenever x; y > 0. That is, the positive cone is invariant.

To prove that no non-negative orbit is unbounded, we need to show that for each i 2 f1; 2g
the sequence F t

i ðx; yÞ
	 


tP 0
is bounded, where ðx; yÞ 2 R2

þ is an arbitrary point. Recall that, if
z6 max Ii then fiðzÞ ¼ zgiðzÞ6 max Ii but if z > max Ii then fiðzÞ ¼ zgiðzÞ < z, where
Ii � fið½0;Xi
Þ and Xi is the unique positive fixed point of fi. Let max I ¼ maxi2f1;2;3;4gðmax IiÞ.
Then
F1ðx; yÞ6 maxfmax I; c1ðy þ ð1� dÞxÞg

and
F2ðx; yÞ6 maxfmax I; c1ðy þ ð1� dÞxÞg:

Recall that each ci 2 ð0; 1Þ. Thus, each F t

i ðx; yÞ
	 


tP 0
is a bounded sequence, and every point in

System (3) has a bounded orbit.
The following result of Hal Smith [47] for monotone systems will be useful in proof of Theorem 1.

Theorem A.1 ([47] Let p 2 int RN
þ

� �
and T : ½0; p
 ! ½0; p
 be continuous, C1 in ð0; pÞ and suppose

DT ð0Þ exists with limx!0;x>0DT ðxÞ ¼ DT ð0Þ. In addition, assume DT ðxÞ > 0 and DT ðyÞ6DT ðxÞ for
0 < x < y < p and that Tp < p.
If T ð0Þ ¼ 0, let k ¼ qðDT ð0ÞÞ. If k6 1, then for every x 2 ½0; p
, T nðxÞ ! 0 as n ! 1. If k > 1,

then T has a unique non-zero fixed point q. Moreover, q 2 ð0; pÞ and T nðxÞ ! q as n ! 1 for every
x 2 ½0; p
 � f0g.
If T ð0Þ“0, then T has a unique fixed point q 2 ½0; p
. Moreover, q 2 ð0; pÞ and T nðxÞ ! q as

n ! 1 for every x 2 ½0; p
.
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Proof of Theorem 1. The proof uses Theorem A.1 of Hal Smith. To establish the proof we show

with a sequence of lemmas that all the hypotheses of Theorem A.1 are satisfied. h

Lemma A.1. In System (3), for each Generation i 2 f1; 2; 3; 4g, let each fecundity function be

modeled by fi, an a-monotone concave map. Then for each i 2 f1; 2g, h0i > 0 and h00i < 0.

Proof of Lemma A.1. Recall that h1 ¼ f3 � c3f2 � c2f1 and h2 ¼ f4 � dc4f3 � c3f2 � c2f1, where each

f 0
i > 0 and f 00

i < 0. By the chain rule,
h01 ¼ f 0
3ðc3f2 � c2f1Þc3f 0

2ðc2f1Þc2f 0
1 > 0
and
h001 ¼ f 00
3 ðc3f2 � c2f1Þ c3f

0
2ðc2f1Þ

� �2
c2f

0
1

� �2þ c3f
0
3ðc3f2 � c2f1Þ f 00

2 ðc2f1Þ c2f
0
1

� �2�
þ f 0

2ðc2f1Þc2f 00
1

�
< 0:
Proceed exactly as above to establish that h02 > 0 and h002 < 0.

Lemma A.2.
ii(i) DF ðx; yÞ > 0 if ðx; yÞ > ð0; 0Þ.
i(ii) DF ð0; 0Þ exists with limðx;yÞ!ð0þ;0þÞ DF ðx; yÞ ¼ DF ð0; 0Þ.
(iii) DF ðu; vÞ < DF ðx; yÞ if 0 < ðx; yÞ < ðu; vÞ < ða; aÞ.
(iv) The spectral radius of DF ð0; 0Þ is c1c2c3g1ð0Þg2ð0Þg3ð0Þðð1� dÞ þ c4dg4ð0ÞÞ.

Proof of Lemma A.2.
DF ðx; yÞ ¼ c1ð1� dÞh01ðc1ðy þ ð1� dÞxÞÞ c1h
0
1ðc1ðy þ ð1� dÞxÞÞ

c1ð1� dÞh02ðc1ðy þ ð1� dÞxÞÞ c1h
0
2ðc1ðy þ ð1� dÞxÞÞ


 �

By Lemma A.1, we have (i) and (iii). Continuity of DF ðx; yÞ guarantees (ii). To obtain (iv) notice
that the eigenvalues of DF ð0; 0Þ are k1 ¼ 0 and k2 ¼ c1c2c3g1ð0Þg2ð0Þg3ð0Þðð1� dÞ þ c4dg4ð0ÞÞ.
By Lemmas 1 and A.2, all the hypotheses of Theorem A.1 of Hal Smith are satisfied, and this

proves Theorem A.1.

Proof of Theorem 2. In System (5), F2ðx; yÞ ¼ dr4F1ðx; yÞ. Hence, the line

L ¼ ðx; yÞ 2 R2þ j y

	
¼ dr4x




is invariant and every point not on it gets mapped to it in one iteration. On the line L,
F2ðx; yÞ ¼ dr4h1ðc1ðdr4 þ ð1� dÞÞxÞ, a one-variable function. h
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